Near-Optimal Parameterization of the Intersection of Quadrics: IV. An Efficient and Exact Implementation
نویسندگان
چکیده
We present the first complete, robust, and efficient C++ implementation for parameterizing the intersection of two implicit quadrics with integer coefficients of arbitrary size. It is based on the near-optimal algorithm presented in Parts I, II, and III [5, 6, 7] of this paper. Our implementation correctly identifies and parameterizes all the algebraic components of the intersection in all cases, returning parameterizations with rational functions whenever such parameterizations exist. In addition, the field of the coefficients of the parameterizations is either of minimal degree or involves one possibly unneeded square root. We also prove upper bounds on the size of the coefficients of the output parameterizations and compare these bounds to observed values. We give other experimental results and present some examples. Key-words: Intersection of surfaces, quadrics, curve parameterization, implementation. ∗ Project Vegas, LORIA (UMR CNRS, INPL, INRIA Lorraine, Universités Nancy 1 & 2), Nancy, France; [email protected]. † Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Rosario, Argentina. Work done while this author was visiting LORIA (supported by the International Relations Delegation of INRIA). Paramétrisation quasi-optimale de l’intersection de quadriques : IV. Une implantation exacte et efficace Résumé : Nous présentons la première implantation complète, robuste et efficace pour calculer une paramétrisation exacte de l’intersection de deux quadriques données sous forme implicite avec coefficients entiers. Cette implantation est basée sur l’algorithme présentée dans les Parties I, II et III [5, 6, 7] de cet article. Notre implantation identifie dans tous les cas chaque composante algébrique de l’intersection et en calcule une paramétrisation avec des fonctions rationnelles lorsqu’une telle paramétrisation existe. De plus, le corps des coefficients de la paramétrisation est soit de degré minimal, soit contient une racine carrée qui peut éventuellement être évitée. Nous calculons des bornes supérieures sur la taille des coefficients des paramétrisations calculées et comparons ces bornes aux tailles observées expérimentalement. Nous présentons également d’autres résultats expérimentaux et des exemples. Mots-clés : Intersection de surfaces, quadriques, paramétrisation, implantation. Near-Opt. Param. of the Intersec. of Quadrics: IV. An Efficient and Exact Implementation 3
منابع مشابه
Near-optimal parameterization of the intersection of quadrics: I. The generic algorithm
We present the first exact and efficient algorithm for computing a proper parametric representation of the intersection of two quadrics in three-dimensional real space given by implicit equations with rational coefficients. The output functions parameterizing the intersection in projective space are polynomial, whenever it is possible, which is the case when the intersection is not a smooth qua...
متن کاملContributions au calcul géométrique effectif avec des objets courbes de faible degré. (Contributions to effective geometric computing with low-degree curved objects)
We present the first efficient algorithm for computing an exact parametric representationof the intersection of two quadrics in three-dimensional real space given by implicit equations withrational coefficients. The output functions parameterizing the intersection are rational functionswhenever it is possible, which is the case when the intersection is not a smooth quartic (for exam...
متن کاملA Complete, Exact and Efficient Implementation for Computing the Adjacency Graph of an Arrangement of Quadrics
We present a complete, exact and efficient implementation to compute the adjacency graph of an arrangement of quadrics, i.e. surfaces of algebraic degree 2. This is a major step towards the computation of the full 3D arrangement. We enhanced an implementation for an exact parameterization of the intersection curves of two quadrics, such that we can compute the exact parameter value for intersec...
متن کاملNear-optimal parameterization of the intersection of quadrics: III. Parameterizing singular intersections
We conclude, in this third part, the presentation of an algorithm for computing an exact and proper parameterization of the intersection of two quadrics. The coordinate functions of the parameterizations in projective space are polynomial, whenever it is possible. They are also near-optimal in the sense that the number of distinct square roots appearing in the coefficients of these functions is...
متن کاملComplete, Exact and Efficient Implementation for Computing the Adjacency Graph of an Arrangement of Quadrics
We present a complete, exact and efficient implementation to compute the adjacency graph of an arrangement of quadrics, i.e. surfaces of algebraic degree 2. This is a major step towards the computation of the full 3D arrangement. We enhanced an implementation for an exact parameterization of the intersection curves of two quadrics, such that we can compute the exact parameter value for intersec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005